1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
//! Common Application Functionality: Events
//!
//! The [`Scheduler`] trait is implemented manually for all possible variants of [`Schedule`],
//! providing a black box for working with [`SEEvent`] resources.
use std::{
collections::{hash_map, HashMap},
future::Future,
pin::Pin,
sync::{atomic::AtomicI64, Arc},
time::{Duration, Instant},
};
use crate::{
client::Client,
device::SEDevice,
time::{current_time, SEPTime},
};
use rand::Rng;
use sep2_common::packages::{
identification::ResponseStatus,
objects::EventStatusType,
time::Time,
types::{MRIDType, OneHourRangeType, PrimacyType},
};
use sep2_common::traits::SEEvent;
use tokio::sync::{
broadcast::{Receiver, Sender},
RwLock,
};
/// A wrapper around an [`SEEvent`] resource.
pub struct EventInstance<E>
where
E: SEEvent,
{
// Event start time, after randomisation
start: i64,
// Event end time, after randomisation
end: i64,
// Event primacy
primacy: PrimacyType,
// The SEEvent instance
event: Box<E>,
// The MRID of the program this event belongs to
// In the pricing function set,
// multiple TimeTariffIntervals can be active
// for a specific TariffProfile (program)
// In that case, we store the MRID of the Rate Component,
// of which there can only be one TimeTariffInterval active at a time
program_mrid: MRIDType,
// The current status of the Event,
status: EIStatus,
// When the event status was last updated
last_updated: Instant,
// The event(s) this supersedes, if any
superseded_by: Vec<MRIDType>,
// Which server this event was sourced from, different values indicate a different server
server_id: u8,
}
pub(crate) type EIPair<'a, E> = (&'a mut EventInstance<E>, &'a MRIDType);
/// The current state of an [`EventInstance`] in the schedule.
///
/// Can be created from a [`EventStatusType`] for the purpose of reading [`SEEvent`] resources.
///
/// Can be converted to a [`ResponseStatus`] for the purpose of creating [`SEResponse`] resources.
///
/// [`SEResponse`]: sep2_common::traits::SEResponse
#[derive(PartialEq, Eq, Debug, Clone, Copy)]
#[repr(u8)]
pub enum EIStatus {
Scheduled,
Active,
Cancelled,
Complete,
CancelledRandom,
Superseded,
}
impl From<EIStatus> for ResponseStatus {
fn from(value: EIStatus) -> Self {
match value {
EIStatus::Scheduled => ResponseStatus::EventReceived,
EIStatus::Active => ResponseStatus::EventStarted,
EIStatus::Cancelled => ResponseStatus::EventCancelled,
EIStatus::Complete => ResponseStatus::EventCompleted,
EIStatus::CancelledRandom => ResponseStatus::EventCancelled,
EIStatus::Superseded => ResponseStatus::EventSuperseded,
}
}
}
impl From<EventStatusType> for EIStatus {
fn from(value: EventStatusType) -> Self {
match value {
EventStatusType::Scheduled => Self::Scheduled,
EventStatusType::Active => Self::Active,
EventStatusType::Cancelled => Self::Cancelled,
EventStatusType::CancelledRandom => Self::CancelledRandom,
EventStatusType::Superseded => Self::Superseded,
}
}
}
impl<E: SEEvent> EventInstance<E> {
pub(crate) fn new(
primacy: PrimacyType,
event: E,
program_mrid: MRIDType,
server_id: u8,
) -> Self {
let start: i64 = event.interval().start.get();
let end: i64 = start + i64::from(event.interval().duration.get());
EventInstance {
status: event.event_status().current_status.into(),
event: Box::new(event),
primacy,
start,
end,
last_updated: Instant::now(),
superseded_by: vec![],
program_mrid,
server_id,
}
}
pub(crate) fn new_rand(
primacy: PrimacyType,
rand_duration: Option<OneHourRangeType>,
rand_start: Option<OneHourRangeType>,
event: E,
program_mrid: MRIDType,
server_id: u8,
) -> Self {
let start: i64 = event.interval().start.get() + randomize(rand_duration);
let end: i64 = start + i64::from(event.interval().duration.get()) + randomize(rand_start);
EventInstance {
status: event.event_status().current_status.into(),
event: Box::new(event),
primacy,
start,
end,
last_updated: Instant::now(),
superseded_by: vec![],
program_mrid,
server_id,
}
}
// Determine if the this event supersedes the other
pub(crate) fn does_supersede(&self, other: &Self) -> bool {
// If there is an overlap
self.start_time() <= other.end_time()
&& self.end_time() >= other.start_time()
// If other has lesser primacy
&& (self.primacy < other.primacy
// Or same primacy, and this one is newer
|| self.primacy == other.primacy
&& self.event.creation_time() > other.event.creation_time())
}
pub(crate) fn update_status(&mut self, status: EIStatus) {
self.status = status;
self.last_updated = Instant::now();
}
pub(crate) fn superseded_by(&mut self, other: &MRIDType) {
self.superseded_by.push(*other);
}
#[inline(always)]
pub fn status(&self) -> EIStatus {
self.status
}
#[inline(always)]
pub fn event(&self) -> &E {
&self.event
}
#[inline(always)]
pub fn primacy(&self) -> &PrimacyType {
&self.primacy
}
#[inline(always)]
pub fn start_time(&self) -> i64 {
self.start
}
#[inline(always)]
pub fn end_time(&self) -> i64 {
self.end
}
#[inline(always)]
pub fn program_mrid(&self) -> &MRIDType {
&self.program_mrid
}
#[inline(always)]
pub fn server_id(&self) -> u8 {
self.server_id
}
}
fn randomize(bound: Option<OneHourRangeType>) -> i64 {
bound.map_or(0, |val| {
let val = val.get();
let mut rng = rand::thread_rng();
let sign = val.signum() as i64;
rng.gen_range(0..=val.abs().into()) * sign
})
}
// This trait uses extra heap allocations while we await stable RPITIT (and eventually async fn with a send bound future)
#[async_trait::async_trait]
/// A Trait specifying a callback for a [`Schedule`]
pub trait EventCallback<E: SEEvent>: Clone + Send + Sync + 'static {
/// Called whenever the state of an event is updated such that a response cannot be automatically determined, and the client device must be made aware.
///
/// Allows the client to apply the event at the device-level, and determine the correct response code.
///
/// In some cases, the correct response code can be determined by the scheduler, in which case the return value of this function will be ignored.
/// The specific cases depend on the function set.
///
/// The event's [`EventInstance::status`] is guaranteed to NOT be [`EIStatus::Scheduled`]
///
/// When determining the ResponseStatus to return, refer to Table 27 of IEEE 2030.5-2018
///
/// If the returned ResponseStatus for a newly Active event is one of:
///
/// [`ResponseStatus::EventOptOut`] || [`ResponseStatus::EventNotApplicable`] || [`ResponseStatus::EventInvalid`]
///
/// The event will internally be marked as cancelled, and the client will no longer receive updates on it.
///
/// Currently, calling this function acquires a global lock on the scheduler, stopping it from making progress.
/// This may be changed in the future.
async fn event_update(&self, event: &EventInstance<E>) -> ResponseStatus;
}
/// Currently useless.
#[async_trait::async_trait]
impl<F, R, E: SEEvent> EventCallback<E> for F
where
F: Fn(&EventInstance<E>) -> R + Clone + Send + Sync + 'static,
R: Future<Output = ResponseStatus> + Send + 'static,
{
async fn event_update(&self, event: &EventInstance<E>) -> ResponseStatus {
Box::pin(self(event)).await
}
}
type EventsMap<E> = HashMap<MRIDType, EventInstance<E>>;
/// Wrapper around a map of MRIDs to EventInstances, to maintain `next_start` and `next_end` validity
/// All functions
pub(crate) struct Events<E>
where
E: SEEvent,
{
map: EventsMap<E>,
next_start: Option<(i64, MRIDType)>,
next_end: Option<(i64, MRIDType)>,
}
impl<E> Events<E>
where
E: SEEvent,
{
pub(crate) fn new() -> Self {
Events {
map: HashMap::new(),
next_start: None,
next_end: None,
}
}
#[inline(always)]
pub(crate) fn next_start(&self) -> Option<(i64, MRIDType)> {
self.next_start
}
#[inline(always)]
pub(crate) fn next_end(&self) -> Option<(i64, MRIDType)> {
self.next_end
}
#[inline(always)]
pub(crate) fn iter_mut(&mut self) -> hash_map::IterMut<'_, MRIDType, EventInstance<E>> {
self.map.iter_mut()
}
pub(crate) fn insert(&mut self, mrid: &MRIDType, ei: EventInstance<E>) {
if ei.status() == EIStatus::Scheduled {
match self.next_start {
Some((start, _)) if ei.start < start => self.next_start = Some((ei.start, *mrid)),
None => self.next_start = Some((ei.start, *mrid)),
_ => (),
}
}
if ei.status() == EIStatus::Active {
match self.next_end {
Some((end, _)) if ei.end < end => self.next_end = Some((ei.end, *mrid)),
None => self.next_end = Some((ei.end, *mrid)),
_ => (),
}
}
let _ = self.map.insert(*mrid, ei);
}
#[inline(always)]
pub(crate) fn get(&self, mrid: &MRIDType) -> Option<&EventInstance<E>> {
self.map.get(mrid)
}
pub(crate) fn update_event(&mut self, event: &MRIDType, status: EIStatus) {
let event = self.map.get_mut(event).unwrap();
event.update_status(status);
self.update_nexts();
}
/// Given an event, and a reason for it's cancellation:
/// - unsupersede (reschedule) unstarted events that are no longer superseded by any other events
/// - mark the given event as cancelled, and re-evaulate the upcoming events
///
/// Uses the schedule's current time, as provided
pub(crate) fn cancel_event(&mut self, event: &MRIDType, reason: EIStatus, current_time: i64) {
self.map
.iter_mut()
.filter(|(_, ei)| ei.status() == EIStatus::Superseded)
.for_each(|(_, ei)| {
// Current event is no longer superseded by the given event
ei.superseded_by.retain(|f| f != event);
// If the event is no longer superseded by anything, and hasn't started yet, reschedule it
if ei.superseded_by.is_empty() && ei.start > current_time {
ei.update_status(EIStatus::Scheduled)
}
});
// Mark the event as cancelled internally, re-evaluate the next event to start
self.update_event(event, reason);
}
/// Reevaluates `next_start` and `next_end`
pub(crate) fn update_nexts(&mut self) {
self.next_start = self
.map
.iter()
.filter(|(_, ei)| ei.status() == EIStatus::Scheduled)
.min_by_key(|(_, ei)| ei.start)
.map(|(mrid, ei)| (ei.start, *mrid));
self.next_end = self
.map
.iter()
.filter(|(_, ei)| ei.status() == EIStatus::Active)
.min_by_key(|(_, ei)| ei.end)
.map(|(mrid, ei)| (ei.end, *mrid));
}
}
pub(crate) type EventHandler<E> = Arc<
dyn Fn(&EventInstance<E>) -> Pin<Box<dyn Future<Output = ResponseStatus> + Send + '_>>
+ Send
+ Sync
+ 'static,
>;
/// A Trait representing the common interface of all schedules.
///
// This trait uses extra heap allocations while we await stable RPITIT (and eventually async fn with a send bound future)
#[async_trait::async_trait]
pub trait Scheduler<E: SEEvent> {
/// The type of the program the specific SEEvent belongs to, containing a primacy value and a unique program MRID.
type Program;
/// Create a new Schedule for a particular function set.
///
/// Any Client instance with an appropriate certificate can be used, as automated Response POST requests will be made to the replyTo field in the event, which is an absolute URI.
///
/// An [`Arc<RwLock<SEDevice>>`] is supplied to allow the schedule to retrieve the latest information about the device when creating automated responses.
///
/// The specified Handler will be called whenever there is an event status update that requires a response from the client.
///
/// The given tickrate determines how often the Schedule should wake from sleep to check if an event has started or ended.
fn new(
client: Client,
device: Arc<RwLock<SEDevice>>,
handler: impl EventCallback<E>,
tickrate: Duration,
) -> Self;
/// Add a type implementing [`SEEvent`] to the schedule. The concrete type depends on the type of schedule.
/// The program the event belongs to is also required, to determine the primacy of the event, and to send the appropriate response for events that get superseded by other programs.
///
/// Events from different servers should be added with different server ids, the ids chosen are irrelevant.
///
/// Subsequent retrievals/notifications of any and all [`SEEvent`] resources should call this function.
async fn add_event(&mut self, event: E, program: &Self::Program, server_id: u8);
}
/// Schedule for a given function set, and a specific server.
///
/// Schedules are bound by the [`SEEvent`] pertaining to a specific function set,
/// and an [`EventCallback`] that is passed event updates, such that clients can make device changes,
/// and dictate the response sent to the server.
///
/// Multi-server interactions are handled gracefully as the `replyTo` field on Events contains the hostname of the server.
///
/// A [`Schedule`] instance is a handle to a handful of shared state.
/// Cloning this struct is relatively cheap, and will involve incrementing all internal atomic reference counts.
///
/// However, schedules currently do not clean up their background tasks when all are dropped,
/// thus [`Schedule::shutdown`] will perform a graceful shutdown.
pub struct Schedule<E>
where
E: SEEvent,
{
pub(crate) client: Client,
// Send + Sync end device, as the EndDevice resource may be updated
pub(crate) device: Arc<RwLock<SEDevice>>,
// All Events added to this schedule, indexed by mRID
pub(crate) events: Arc<RwLock<Events<E>>>,
// Callback provider for informing client of event state transitions
pub(crate) handler: EventHandler<E>,
// Broadcast to tasks to shut them down
pub(crate) bc_sd: Sender<()>,
// How often schedule background tasks should wake to check for an event end or event start.
// Our background tasks sleep intermittently as IEEE 2030.5 client devices may be sleepy.
// Thread / Tokio sleeps do not make progress while the device itself is slept.
pub(crate) tickrate: Duration,
// Schedule-specific time offset, as set by a Time resource
pub(crate) time_offset: Arc<AtomicI64>,
}
// Manual clone implementation since H doesn't need to be clone
impl<E> Clone for Schedule<E>
where
E: SEEvent,
{
fn clone(&self) -> Self {
Self {
client: self.client.clone(),
device: self.device.clone(),
events: self.events.clone(),
handler: self.handler.clone(),
bc_sd: self.bc_sd.clone(),
tickrate: self.tickrate,
time_offset: Arc::new(AtomicI64::new(0)),
}
}
}
impl<E> Schedule<E>
where
E: SEEvent,
{
/// Updates the schedule-specific time offset.
/// "If FunctionSetAssignments contain both Event-based function sets (e.g., DRLC, pricing, message) and a
/// Time resource, then devices SHALL use the Time resource from the same FunctionSetAssignments when
/// executing the events from the associated Event-based function set."
pub fn update_time(&mut self, time: Time) {
let offset = time.current_time.get() - i64::from(current_time());
self.time_offset
.store(offset, std::sync::atomic::Ordering::Relaxed);
}
pub fn shutdown(&mut self) {
match self.bc_sd.send(()) {
Ok(_) => log::info!("{}Schedule: Successfully shutdown gracefully", E::name()),
Err(_) => log::error!("{}Schedule: Failed to shutdown gracefully", E::name()),
};
}
pub(crate) fn schedule_time(&self) -> SEPTime {
current_time() + self.time_offset.load(std::sync::atomic::Ordering::Relaxed)
}
pub(crate) async fn clean_events(self, mut rx: Receiver<()>) {
// Can/Should be adjusted - but a week is pretty safe for servers
let week = Duration::from_secs(60 * 60 * 24 * 7);
let mut last = Instant::now();
let mut next = last + week;
loop {
tokio::select! {
_ = crate::time::sleep_until(next,self.tickrate) => (),
_ = rx.recv() => {
log::info!("{}Schedule: Shutting down clean event task...", E::name());
break
},
}
self.events.write().await.map.retain(|_, ei| {
// Retain if:
// Event is active or scheduled
// or
// Event has been updated since last prune
matches!(ei.status, EIStatus::Active | EIStatus::Scheduled)
|| ei.last_updated > last
});
last = Instant::now();
next = last + week;
}
}
}